Figure 2. UCF sample results. Left: input counting image. Mid-
dle: Ground truth density map. Right: AMDCN prediction of
density map on test image. The network never saw these im-
ages during training. All density maps are one channel only (i.e.
grayscale), but are colored here for clarity.

of regression for production of density maps [24]. In the
same spirit, [4] combines deep and shallow convolutions
within the same network, providing accurate counting of
dense objects (e.g. the UCF50 crowd dataset).

In this paper, however, we aim to apply the dilated con-
volution method of [25], which has shown to be able to in-
corporate multiscale perspective information without using
multiple inputs or a complicated network architecture, as
well as the multicolumn approach of [8] 28] to aggregate
multiscale information for the counting problem.

3. Method

3.1. Dilated Convolutions for Multicolumn Net-
works

We propose the use of dilated convolutions as an at-
tractive alternative to the architecture of the HydraCNN
[11'_8[], which seems to saturate in performance at 3 or more
columns. We refer to our proposed network as the ag-
gregated multicolumn dilated convolution networkﬂ hence-
forth shortened as the AMDCN. The architecture of the
AMDCN is inspired by the multicolumn counting network
of [28]]. Extracting features from multiple scales is a good
idea when attempting to perform perspective-free counting
and increasing the convolution kernel size across columns
is an efficient method of doing so. However, the number
of parameters increases exponentially as larger kernels are
used in these columns to extract features at larger scales.
Therefore, we propose using dilated convolutions rather
than larger kernels.

Dilated convolutions, as discussed in [25]], allow for the
exponential increase of the receptive field with a linear in-
crease in the number of parameters with respect to each hid-

den layer.
In a traditional 2D convolution, we define a real valued
function F' : Z? — R, an input 2, = [—r,7|? € Z2, and

a filter function & : ©Q, — R. In this case, a convolution

'Imp]ementation available on https://github.com/

diptodip/counting,

operation as defined in [25]] is given by

(Fxk)(p)= Y F(s)k(t). 1)

s+t=p

A dilated convolution is essentially a generalization of
the traditional 2D convolution that allows the operation to
skip some inputs. This enables an increase in the size of
the filter (i.e. the size of the receptive field) without los-
ing resolution. Formally, we define from [23] the dilated
convolution as

(Fxk)(p)= Y F(s)k(t) )

s+lt=p

where [ is the index of the current layer of the convolution.

Using dilations to construct the aggregator in combi-
nation with the multicolumn idea will allow for the con-
struction of a network with more than just 3 or 4 columns
as in and [8]], because the aggregator should prevent
the saturation of performance with increasing numbers of
columns. Therefore the network will be able to extract use-
ful features from more scales. We take advantage of dila-
tions within the columns as well to provide large receptive
fields with fewer parameters.

Looking at more scales should allow for more accurate
regression of the density map. However, because not all
scales will be relevant, we extend the network beyond a
simple 1 x 1 convolution after the merged columns. In-
stead, we construct a second part of the network, the aggre-
gator, which sets our method apart from [28]], [8]], and other
multicolumn networks. This aggregator is another series of
dilated convolutions that should appropriately consolidate
the multiscale information collected by the columns. This
is a capability of dilated convolutions observed by [25].
While papers such as [28] and [[8]] have shown that multiple
columns and dilated columns are useful in extracting multi-
scale information, we argue in this paper that the simple ag-
gregator module built using dilated convolutions is able to
effectively make use multiscale information from multiple
columns. We show compelling evidence for these claims in
Section {.3]

The network as shown in Figure [T contains 5 columns.
Note that dilations allow us to use more columns for count-
ing than [28] or [8]). Each column looks at a larger scale than
the previous (the exact dilations can also be seen in Figure
|I[)‘ There are 32 feature maps for each convolution, and all
inputs are zero padded prior to each convolution in order
to maintain the same data shape from input to output. That
is, an image input to this network will result in a density
map of the same dimensions. All activations in the speci-
fied network are ReLUs. Our input pixel values are floating
point 32 bit values from 0 to 1. We center our inputs at 0 by
subtracting the per channel mean from each channel. When
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Figure 4. Ablation studies on various datasets in which the number of columns is varied and the aggregator is included or not included.
The results generally support the use of more columns and an aggregator module.

Method MAE
AMDCN (without perspective infor- | 16.6
mation)

AMDCN (with perspective informa- | 14.9
tion)

LBP+RR [28] (with perspective infor- | 31.0
mation)

MCNN [28] (with perspective informa- | 11.6
tion)

[27] (with perspective information) 12.9

Table 4. Mean absolute error of various methods on WorldExpo
crowds

We obtain superior or comparable results in most of
these datasets. The AMDCN is capable of outperforming
these approaches completely especially when perspective
information is not provided, as in UCF and TRANCOS.
These results show that the AMDCN performs surprisingly
well and is also robust to scale effects. Further, our ablation
study of removing the aggregator network shows that using
more columns and an aggregator provides the best accuracy
for counting — especially so when there is no perspective
information.

5.2. Future Work

In addition to an analysis of performance on counting,
a density regressor can also be used to locate objects in the
image. As mentioned previously, if the regressor is accurate
and precise enough, the resulting density map can be used
to locate the objects in the image. We expect that in order to
do this, one must regress each object to a single point rather
than a region specified by a Gaussian. Perhaps this might be

accomplished by applying non-maxima suppression to the
final layer activations.

Indeed, the method of applying dilated filters to a multi-
column convolutional network in order to enable extracting
features of a large number of scales can be applied to var-
ious other dense prediction tasks, such as object segmenta-
tion at multiple scales or single image depth map prediction.
Though we have only conducted experiments on counting
and used 5 columns, the architecture presented can be ex-
tended and adapted to a variety of tasks that require infor-
mation at multiple scales.
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